Objective: To investigate the effect of an excessive tibial plateau angle (TPA) and change in compressive load on tensile forces experienced by the cranial cruciate, medial collateral, and lateral collateral ligaments (CCL, MCL, and LCL, respectively) of canine stifle joints.
Sample: 16 cadaveric stifle joints from 16 orthopedically normal Beagles.
Procedures: Stifle joints were categorized into unchanged (mean TPA, 30.4°) and excessive (mean TPA before and after modification, 31.2° and 41.1°, respectively) TPA groups. The excessive TPA group underwent a TPA-increasing procedure (curvilinear osteotomy of the proximal aspect of the tibia) to achieve the desired TPA. A robotic system was used to apply a 30- and 60-N compressive load to specimens. The craniomedial band of the CCL, caudolateral band of the CCL, MCL, and LCL were sequentially transected; load application was repeated after each transection. Orthogonal force components were measured in situ. Forces on ligaments were calculated after repeated output force measurements as the contribution of each component was eliminated.
Results: Increasing the compressive load increased tensile forces on the craniomedial and caudolateral bands of the CCL, but not on the MCL or LCL, in specimens of both groups. At the 60-N load, tensile force on the craniomedial band, but not other ligaments, was greater for the excessive TPA group than for the unchanged TPA group.
Conclusions and clinical relevance: Results indicated that stress on the CCL may increase when the compressive load increases. The TPA-increasing procedure resulted in increased tensile force on the CCL at a 60-N compressive load without affecting forces on the MCL or LCL.